Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms
نویسندگان
چکیده
This paper evaluates the effects of different time-varying exposure patterns of the strobilurin fungicide azoxystrobin on freshwater microsocosm communities. These exposure patterns included two treatments with a similar peak but different time-weighted average (TWA) concentrations, and two treatments with similar TWA but different peak concentrations. The experiment was carried out in outdoor microcosms under four different exposure regimes; (1) a continuous application treatment of 10 μg/L (CAT(10)) for 42 days (2), a continuous application treatment of 33 μg/L (CAT(33)) for 42 days (3), a single application treatment of 33 μg/L (SAT(33)) and (4) a four application treatment of 16 μg/L (FAT(16)), with a time interval of 10 days. Mean measured 42-d TWA concentrations in the different treatments were 9.4 μg/L (CAT(10)), 32.8 μg/L (CAT(33)), 14.9 μg/L (SAT(33)) and 14.7 μg/L (FAT(16)). Multivariate analyses demonstrated significant changes in zooplankton community structure in all but the CAT(10) treated microcosms relative to that of controls. The largest adverse effects were reported for zooplankton taxa belonging to Copepoda and Cladocera. By the end of the experimental period (day 42 after treatment), community effects were of similar magnitude for the pulsed treatment regimes, although the magnitude of the initial effect was larger in the SAT(33) treatment. This indicates that for long-term effects the TWA is more important for most zooplankton species in the test system than the peak concentration. Azoxystrobin only slightly affected some species of the macroinvertebrate, phytoplankton and macrophyte assemblages. The overall no observed ecologically adverse effect concentrations (NOEAEC) in this study was 10 µg/L.
منابع مشابه
Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes
The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplan...
متن کاملChronic toxicity of azoxystrobin to freshwater amphipods, midges, cladocerans, and mussels in water-only exposures.
Understanding the effects of fungicides on nontarget organisms at realistic concentrations and exposure durations is vital for determining potential impacts on aquatic ecosystems. Environmental concentrations of the fungicide azoxystrobin have been reported up to 4.6 μg/L in the United States and 30 μg/L in Europe. The objective of the present study was to evaluate the chronic toxicity of azoxy...
متن کاملResistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, ar...
متن کاملStudies on Sensitivity Reduction in Solo and Mixture Treatments and Fungicide-Induced Mutagenesis in Monilinia fructicola
Three fungicide-sensitive Monilinia fructicola isolates were exposed in weekly transfers of mycelia to a dose gradient of a DMI and a QoI fungicide (azoxystrobin) in solo or mixture treatments and fungicide sensitivity as well as genetic changes were assessed. Isolates showed a faster reduction in sensitivity (higher resistance factors) to azoxystrobin than to SYP-Z048; this process was slower ...
متن کاملA pesticide paradox: fungicides indirectly increase fungal infections.
There are many examples where the use of chemicals have had profound unintended consequences, such as fertilizers reducing crop yields (paradox of enrichment) and insecticides increasing insect pests (by reducing natural biocontrol). Recently, the application of agrochemicals, such as agricultural disinfectants and fungicides, has been explored as an approach to curb the pathogenic fungus, Batr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2012